ACADEMIC CALENDAR : SESSION- (2024-2025)

NAME OF TEACHER: DR. NEETU SINGH/ DR. SEEMA SHUKLA

DEPARTMENT: DEPARTMENT OF **PHYSICS**

CLASS: BSC (NEP)-I YEAR (I SEMESTER) Applicable from July 2024 (CREDITS:04)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) I YEAR, I SEMESTER CREDITS-4 T:04	P-1 (MAJOR & MINOR) PHY-101- MECHANICS AND WAVE MOTION	Relativity a and observa 2. They wo arise in non 3. They wo in gravitatio 4. They wo our daily lit and artificia 5. They wo used materi 6. The students and a students are students and artificia 5. They wo used materi 6. The students are students and artificia 5. They would be students are s	ould be able to understand the different-inertial frames. Ould have a clear understanding of the conal fields or mechanical systems have buld feel the thrill to know that the safe. Further, they would be able to do	ess of the revolu- ences between it e dynamics of co- zing friction etc. ame set of laws mathematical ca- tlate various ma- classical laws. and apply the pro- ous phenomena	nertial and noninertial for onservative and non-constitute work for planetary elculations with applications croscopic elastic proper operties of oscillations (is made through lo frames and see how servative forces in a and galactic motion on of these laws to	gical evidences y pseudo-forces real life such as ns also work in various objects e of the widely
				frames. Action-at-a-distance and				

UNIT-II	Mach's principle. Conclusions of Michelson-Morley experiment. Chief arguments against Galilean relativity. Postulates of Special Relativity. Simple ideas of length contraction and time dilation. Energy and momentum in relativistic mechanics and modification of Newton's laws of motion. Concepts of gradient, divergence and curl of physical quantities. Simple application of Gauss's divergence and Stoke's curl theorems. Conservative and non-conservative forces, Conservation laws for energy and linear momentum and their relation to symmetries. Pseudoforces in rotating frame. Coriolis force. Elastic and inelastic collisions and one and two dimensions. Centre of mass frame as the zeromomentum, Torque, Conservation of angular momentum and its relation to isotropy of space. Rotational energy and inertia tensor. Moment of inertia for simple bodies (ring, disk, rod, solid and hollow sphere, solid and hollow cylinder, rectangular lamina). The combined translational and rotational motion	MIN 14 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	translational and rotational motion of a rigid body on horizontal and				

UN	inclined planes. 4 Elasticity, Relations between elastic constants. Twisting of hollow and solid cylinders. Torsional rigidity. Bending moment and Flexural rigidity in bending of beam. Geometrical moment of inertia. Depression for cantilever and supported beams. Reduction of a two-body central force problem in to one-body problem. Reduced mass for a pair of bodies. Relative and centre of mass motion with reduced mass. Motion of Planets, satellites and our solar system. Kepler's laws of planetary motion and their implications. Role of the inverse-square form of Newton's law of gravitation in determination of orbit. Motion of geo-synchronous and geo-stationary satellites. Elementary concepts of Global Positioning System (GPS) based on relativistic mechanics. Structure and motion of our Galaxy due to self gravity.	MIN 12 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
UN	T-IV Differential equation of simple harmonic motion and its solution. Damped and Forced harmonic oscillations, Sharpness of Resonance. Quality factor. Plane progressive waves in fluid media and pressure and energy distribution along the waves.	MIN 12 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

			Transport of energy along strings. Reflection of waves from free and fixed boundaries and phase change at the boundaries. Principle of superposition of waves. Standing waves and resonance. Phase and group velocity. References: Text Books: 1. Daniel Kleppner and Robert Kolenkow, "An Introduction to Mechanics", (Mc Graw Hill), 2017. 2e. 2. Charles Kittel, Walter D. Knight, Malvin A. Ruderman, Carl A. Helmholz, Burton J. Moyer, "Mechanics (In SI Units): Berkeley Physics Course Vol 1", McGraw Hill, 2017, 2e. 3. Richard P. Feynman, Robert B. Leighton, Matthew Sands, "The Feynman Lectures on Physics - Vol. 1", Pearson Education Limited, 2012. 4. Halliday, Resnick and Walker, "Principles of Physics", (Wiley) 2018, 10e. 5. Frank S. Crawford, Jr, "Waves": Berkeley Physics Course Vol 3", McGraw Hill, 2017. 6. D.S. Mathur, "Mechanics", S. Chand Publishing, 1981, 3e. 7. R.K. Shukla and Anchal Srivastava, "Mechanics" Published by: New Age International (P) Limited Publishers. Web References: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptellrid 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/current_he/8	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
2	BSC (NEP) - I YEAR, I SEMESTER	P-2 (MAJOR)	Course Outcomes: 1. The student will get an introduction to the discipline of optics and its role in daily life 2. The optics course will give the student a basic knowledge of interference, diffraction and polarization. 3. The student will be able to analyze and calculate interference between light waves and application of various interferometers along with their practical applications. 4. The student would know the conditions for near and far-field diffraction and be able to calculate the far-from gratings and simple aperture functions.	f the theory to

CREDITS-4		5. The stud	dent would understand how the polari	zation of light c	hanges at reflection and	transmission at inte	rfaces.
T:04	PHY-102- OPTICS	UNIT-1	Electromagnetic nature of light; Superposition of light waves; Coherence, Spatial and temporal coherence; Interference, Division of Wavefront – Young's double slit experiment, Fresnel's Biprism, Lloyd's Mirror; Division of amplitude – Thin films (parallel and wedge shaped films), Newton's rings. Interferometers: Michelson's Interferometer, (i) Idea about form of fringes, (ii) Determination of wavelength, (iii) wavelength difference, (iv) refractive index and visibility of fringes; Fabry-Perot interferometer; Etalon	MIN 13 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		UNIT-II	Diffraction; Fresnel Diffraction - Half period zones, Zone plate, diffraction at a straight edge and narrow wire; Fraunhoffer Diffraction — Diffraction at circular aperture, diffraction at single and double slits with derivation of equation for intensity and visibility; Diffraction grating, principal maxima and missing orders.	MIN 13 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		UNIT-III	Resolving power; Rayleigh's criterion of resolution, Resolving power of grating and telescope. Polarization: polarization by reflection, polarizing angle, Brewster's law, Law of Malus;	MIN 13 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

UNIT-IV Reference	Half shade and Biquartz polarimeters. Jones matrix, matrix representation of plane polarized waves, matrices for polarizers, retardation plates and rotators.	MIN 13 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
2. Brij Lal 3. E.Hech 4. A.K.G Web Refe https://ope 2. Nationa https://ww 3. Uttar Pr http://heec	and N. Subrahmaniyam, Optics, S. Cland N. Subrahmani, T. Subrahmani, C.	nand. sachusetts Institu d Learning (NP) ry, px	nte of Technology, ΓΕL),		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. NEETU SINGH/ DR. SEEMA SHUKLA

DEPARTMENT: DEPARTMENT OF **PHYSICS**

CLASS: BSC (NEP)-I YEAR (II SEMESTER) Applicable from January 2025 (CREDITS:04)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) - I YEAR,	P-3 (MAJOR &	Course Outcomes: After successful completion of this course, students will: 1. Understand the basic mathematical concepts related to Electromagnetic fields, and use the understanding of calcul along with basic principles to solve problems encountered in science.					of calculus
	I I SEMESTER	MINOR)	2. Compreh with regard	nend and apply the understanding of to Maxwell's laws, to explain natura	fundamental law l physical proces	s and concepts in electrics and related technologies.	ogical advancement	S.
	CREDITS-4	PHY-201- ELECTRICITY	physical ph	out the origin and basic properties of enomena they generate - Electromag	netic waves and	their properties.		
	T:04	AND MAGNETISM	5. Visualize	for the importance of electricity and e and design experiments based on the				
			UNIT-I	Electrostatics: Electric charge & types of electric charge densities, Coulomb's Law. General expression for Electric field E. Electric flux, Gauss's law (applications included). Divergence & Curl of Electrostatic field. Line integral of Electric field, Electric potential (V), Electric field as negative of gradient of electric potential (E =		OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

	Susceptibility and permeability.				
	Relation between B, M and H.				
	Types of Magnetic materials. B-H				
	curve and Hysteresis.				
UNIT-III	Time Varying Electromagnetic	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
	Fields: Faraday's laws of	12	METHOD	GET THE	THROUGH
	Electromagnetic Induction and	LECTURES	(NOTES IN FORM OF PDF.AUDIO/	UNDERSTANDING OF THE TOPIC	ASSIGNMENTS AND
	Lenz's law. Induced Electric field,		VIDEO,CLASS ROOM	DISCUSSED.	DISCUSSIONS
	non- conservative nature of		TEACHING METHOD)		
	Induced electric field. Self and				
	Mutual Induction (applications				
	included). Selfinductance of a				
	solenoid and toroid, Mutual				
	inductance of two Coils. Energy				
	stored in Magnetic Field. Skin				
	effect. Motion of Electron in a				
	changing Magnetic field –				
	Betatron equation. Theory and				
	working of the moving coil				
TANKE W.	(applications included).				
UNIT-IV	Electromagnetic Waves: Equation of continuity of current,	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
	of continuity of current, Displacement current, derivation	14 LECTURES	METHOD	GET THE UNDERSTANDING	THROUGH ASSIGNMENTS
	of Maxwell's equations and	LECTURES	(NOTES IN FORM OF	OF THE TOPIC	AND
	physical significance of Maxwell		PDF,AUDIO/ VIDEO,CLASS ROOM	DISCUSSED.	DISCUSSIONS
	Correction term. Electromagnetic		TEACHING METHOD)		
	waves in vacuum and isotropic				
	Dielectric medium, Transverse				
	nature of Electromagnetic waves,				
	Energy density in Electromagnetic				

	I							
			wave - Poynting vec	tor.				
			References:					
			1. E.M. Purcell, "Electricity	and Magnetis	m (In SI Units):	Berkeley Physics Cour	se Vol 2", McGraw	
			Hill, (2017), 2e.					FINAL
			2. Richard P. Feynman, Rob			ds, "The Feynman Lect	ures on Physics -	EVALUATION
			Vol. 2", Pearson Education					THROUGH
			3. David J. Griffiths, "Intro					INTERNAL ASSESMENT
			4. W.K.H Panofsky and M.	Philips, "Clas	sical Electricity	and Magnetism" (Dove	er Books on	UPLODED ON
			Physics, 2012)	. 1 . 6.121	136	O	260)	LU EXAM PORTAL
			5. Arthur F. Kip, "Fundame					TORTAL
			6. J.H. Fewkes& John Yarv				iv. Press, 1991).	
			7. B B Laud, "Electromagn				1 2010 4	
			8. D.C. Tayal, "Electricity					
			9. N. Wadhwani, "Electrici	ty and magneti	ism", PHI Learn	ing, ISBN: 9788120339	9051,	
			9788120339651	4. Tl		? IID II:!4 I ::4	1	
			10. R.K. Shukla, "Introductive VEB REFERENCES:	on to Electricit	y & Magnetisin	, nr nammon Limited	l.	
			NET REFERENCES: . MIT Open Learning - Massach	ugatta Instituta	of Toohnology	https://apaplaamina.n	nit adu/	
			2. National Programme on Techr				mr.edu/	
			ttps://www.youtube.com/user/nr		ed Leaning (M	TEL),		
2	BSC (NEP) –	P-4	Course Outcomes:	<u>iciiid</u>				
	I YEAR,	1 -4	Experimental physics has the mo	act atrileina imr	ant on the indus	two xxxhanaxxan tha inatmy	mants are used to	
		(MAIOD)	determine the thermal and electr					
	I I SEMESTER	(MAJOR)	course:	ome properties	s. The following	outcomes are expected	by this factoratory	
	SENIESTER		Students will achieve measure	ement precision	า			
	CREDITS-4		2. Students will verify the conce			ents in these areas		
			3. Students will better appreciate				magnetism and	
	T:04	PHY 202-	optics through experiments.	, the theoretica	. concepts in me	chames, electricity und	magnetioni, and	
		MECHANICS,	4. Online Virtual Lab Experimen	its are expecte	d to give insight	in the simulation techn	igues, and provide	
		ELECTRICITY	basis for modeling.		5 · · · · · · · · · · · · · · · · · · ·		-1, and pro . 140	
		& MAGNETISM	Lab Experiment List :					
		_	Students have to do total of 06 e	xperiments fro	m the following	list taking any two exp	eriments from each	
		AND OPTICS	group. Students have to do three					

TAD	(4)	1 D	MINI 12	DISCUSSIONS 9	CTUDENTS	EVALUATION
LAB	(A) Mechanics:	 Determination of Young Modulus of the material of a beam by flexure Determination of modulus of rigidity of a wire by statical method Determination of 'g' by compound pendulum. Determination of Surface Tension of water by capillary rise method. Determination Coefficient of Viscosity of water. Determination of the frequency of A.C. Mains 	MIN 12 LECTURES	DISCUSSIONS & OFFLINE TEACHING METHOD	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH PRACTICALS AND DISCUSSIONS
	(B) Optics	1. Measurement of Dispersive power of a given prism 2. Determination of the wavelength of light by Newton's ring. 3. Measurement of height of tower by a Sextant 4. Verification of Brewster's Law 5. Determination of specific rotation of an optically active substance by polarimeter 6. Diffraction at a wire	MIN 12 LECTURES	DISCUSSIONS & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH PRACTICALS AND DISCUSSIONS
	(C) Electricity and Magnetism	 Determination of High resistance by leakage method. Determination of Mutual Induction by Ballistic galvanometer. Determination of Horizontal component of earth's magnetic field by earth inductor. 	MIN 12 LECTURES	DISCUSSIONS & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH PRACTICALS AND DISCUSSIONS

	4. Determination of Magnetic			
	field of a electro magnet by			
	Ballistic galvanometer.			
	5. Determination of Time			
	constant striking & extension			
	Potential of neon bulb in CR			
	circuit.			
	6. Magnetic field by Helmholtz			
	coil.			
	/irtual Lab Experiment List/Link MECHANICS			
	en Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu			
	Labs at Amrita Vishwa Vidyapeetham https://vlab.amrita.edu/?sub=1&brch=74			
1. Torque	e and angular acceleration of a fly wheel			
	nal oscillations in different liquids			
	nt of inertia of flywheel			
	n's second law of motion			
	ic pendulum			
6. Collision				
	tile motion			
8. Elastic	and inelastic collision			
	Virtual Lab Experiment List / Link OPTICS			
	Labs at Amrita Vishwa Vidyapeetham https://vlab.amrita.edu/?sub=1&brch=189			
	on's Rings: Wavelength of light			
	n's Rings: Refractive index of liquid			
	ter's angle determination			
	beam divergence and spot size Virtual Labs at Amrita Vishwa Vidyapeetham			
	ab.amrita.edu/index.php?sub=1&brch=281			
5. Spectro	ometer: Refractive index of the material of a prism			
6. Spectro	ometer: Dispersive power of a prism			
	Online Virtual Lab Experiment List / Link			
	RICITY AND MAGNETISM Virtual Labs at Amrita Vishwa Vidyapeetham			
	ab.amrita.edu/?sub=1&brch=192			
	nt galvanometer			
	etic field along the axis of a circular coil carrying current			
3. Deflect	tion magnetometer			

4. Van de Graaff generator 5. Barkhausen effect 6. Temperature coefficient of resistance 7. Anderson's bridge 8. Quincke's method REFERENCES: 1. B.L. Worsnop, H.T. Flint, "Advanced Practical Physics for Students", Methuen & Co., Ltd., London, 1962, 9e 2. S. Panigrahi, B. Mallick, "Engineering Practical Physics", Cengage Learning India Pvt. Ltd., 2015, 1e 3. Anchal Srivastava and R.K. Shukla, "Practical Physics (Electricity, Magnetism and Electronics)", Published by: New Age International (P) Limited Publishers 4. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e 5. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e WEB REFERENCES: Virtual Labs at Amrita Vishwa Vidyapeetham, https://vlab.amrita.edu/?sub=1&brch=194 Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ac.in/be/# Digital Platforms/Web Links of other virtual labs may be suggested /added to this lists by individual	FINAL EVALUATION THROUGH INTERNAL PRACTICAL EXAMS UPLODED ON LU EXAM PORTAL
Digital Platforms/Web Links of other virtual labs may be suggested /added to this lists by individual Universities	

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. NEETU SINGH/ DR. SEEMA SHUKLA

DEPARTMENT: DEPARTMENT OF PHYSICS

CLASS: BSC (NEP)-II YEAR (III SEMESTER) Applicable from July 2024 CREDITS:04)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) - II YEAR,	P-5 (MAJOR &	2. They wou 3. Students v	comes: The students will understand the ld learn the idea of entropy and associate will have an understanding of Maxwell's acquire the knowledge about the fundamental control of the cont	ed theorems, and the thermodynamic re	he thermodynamic potential lations.	als and their physical	
	SEMESTER CREDITS-4	MINOR)	UNIT-I	Thermodynamics: Zeroth Law of thermodynamics and temperature. First law and internal energy, conversion of heat into work, Various	MIN. 14 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC	EVALUATION THROUGH ASSIGNMENTS AND
	T:04	PHY301- Heat and Thermodynamics		Thermodynamical Processes, Applications of First Law: General Relation between Cp & Cv, Work Done during Isothermal and Adiabatic Processes, Compressibility & Expansion Coefficient, Reversible & irreversible processes, Second law & Entropy, Carnot's cycle & theorem, Entropy changes in reversible & irreversible processes. Clausius Inequality, entropy and		(NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	OF THE TOPIC DISCUSSED.	AND DISCUSSIONS

	temperature diagrams, Third law of				
	thermodynamics, Unattainability of				
	absolute zero.Thermodynamic				
	Potentials: Enthalpy, Gibbs,				
	Helmholtz and Internal Energy				
	functions, Maxwell's relations &				
	applications				
	(1) Clausius-Clapeyron Equation,				
	(2)Expression for (CP- CV),				
	(3)CP/CV (4) TdS equations.				
	Real Gases: Deviations from the				
UNIT-II	Ideal Gas Equation, Behaviour of	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
	Real Gases, The Virial Equation.	14 LECTURES	METHOD	GET THE UNDERSTANDING	THROUGH ASSIGNMENTS
	Andrew's Experiments on CO2 Gas.	LLCTUKES	(NOTES IN FORM OF	OF THE TOPIC	AND
	Critical Constants. Boyle		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS
	Temperature. Van der Waal's		VIDEO,CLASS ROOM		
	Equation of State for Real		TEACHING METHOD)		
	Gases. Values of Critical Constants.				
	Law of Corresponding States. Joule's				
	Experiment. Free Adiabatic				
	Expansion of a Perfect Gas. Joule-				
	Thomson Porous Plug Experiment.				
	Joule-Thomson Effect for Real and				
	Van der Waal Gases.Temperature of				
	Inversion. JouleThomson Cooling.				
	Kinetic Theory of Gases: RMS speed,				
UNIT-III	Kinetic Interpretation of temperature,	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
	Degree of Freedom, Law of	12 LECTURES	METHOD	GET THE UNDERSTANDING	THROUGH ASSIGNMENTS
	equipartition of energy (no	LLCTOKLS	(NOTES IN FORM OF	OF THE TOPIC	AND
	derivation) and its15 applications to		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS
	specific heat of gases; mono-atomic		VIDEO,CLASS ROOM		
	and diatomic Gases. Mean free path,		TEACHING METHOD)		
	Transport Phenomena: Viscosity,				
	Conduction and Diffusion (for				
	vertical case), Derivation of				
	Maxwell's law of distribution of				
	velocities and its experimental				
	verification.				
	Theory of Radiation: Blackbody				

			UNIT-IV	radiation, Spectral distribution, Concept of Energy Density, Derivation of Planck's law, Deduction of Wien's distribution law, Rayleigh-Jeans Law, Stefan- Boltzmann Law and Wien's displacement law from Planck's law. Solar Constant.	MIN 12 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			2. Meghnad 3. Enrico Fer 4. M.W. Zen 5. F.W. Sear Web Ref https://open 2. Nar https://www 3. Uttar Pra http://heeco	Bansal and C. Ghosh, "Thermal Physics Saha, and B.N. Srivastava, "A Treatise ormi, "Thermodynamics" Dover Publicat nansky and R. Dittman, "Heat and Therms & G.L. Salinger, "Thermodynamics, K ferences: 1. MIT Open Leadlearning.mit.edu/tional Programme on wyoutube.com/user/nptelhrd adesh Higher Education Digital Libration on the Libration of the Libratic of the Libration of the Libratic of t	on Heat"Indian Protions, 2013. modynamics" McClinetic theory & Starning - Masternation - Masternation of the control of the co	ess 1969. Graw- Hill College 1996. tatistical thermodynamics" ssachusetts Institute Enhanced Learn	of Technology, ing (NPTEL),	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
2	BSC (NEP) II YEAR, III SEMESTER CREDITS-4 T:04	P-6 (MAJOR) PHY302- Perspectives of Quantum Physics	following ou 1. It will help 2. It will mal jumpfrom cla 3. A student theoretical da 4. A study of wave particle 5. An apprece students mor appears in m	syllabus in Perspectives of Quantum Ph	s of Quantum Phy of quantum mech inadequacies of clerstand how major and its application with the control of the con	sics. nanics as a continuity of classical Physics were over or concepts developed and one will make students under how a particle could behave to various problems in coroblems across science su	come by various concernanced over time. Extracted the most mode ave like a wave. Quantum mechanics we bjects as Schrödinger	epts and rn concept of ill make equation

	T-1 - 1 - 1 - 1 - 1	l . en :	T	1	
UNIT-1	Black Body Radiation, Spectral	MIN 13	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
	Distribution of Black Body Radiation,	LECTURES	METHOD	GET THE	THROUGH
	Rayleigh Jeans Law, Wien's	LECTORES	, METHOD	UNDERSTANDING	ASSIGNMENTS
	Displacement Law, Planck's Radiation		(NOTES IN FORM OF	OF THE TOPIC	AND
	Law, Photoelectric Effect, The		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS
	Quantum Theory of Light, Continuous		VIDEO,CLASS ROOM TEACHING METHOD)		
	and characteristic X-ray, X-ray		TEACHING METHOD)		
	generation and uses, Compton effect,				
	Gravitational Red Shift, de Broglie				
	waves, de Broglie Wave Function and				
	its Properties, Interpretation of wave				
	function, de Broglie Wave				
	Velocity, Complementary principle,				
	Principle of Superposition, Wave and				
	Group Velocity, Motion of Wave				
	Packets, Davisson and Germer				
	Experiment-Diffraction of Electrons,				
	Wave-particle duality Experiment.				
	Heisenberg's Uncertainty principle and				
UNIT-II	its applications, Estimating minimum	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
	energy of a confined particle using	13 LECTURES	METHOD	GET THE UNDERSTANDING	THROUGH ASSIGNMENTS
	uncertainty principle, Estimate of	LLCTOKLS	(NOTES IN FORM OF	OF THE TOPIC	AND
	Hydrogen Ground State Energy; Wave		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS
	Equation, Wave Equivalent of an		VIDEO,CLASS ROOM		
	unrestricted		TEACHING METHOD)		
	Particle, Time Dependent Schrödinger				
	wave equation: Eigenvalues and Eigen				
	Functions, Probability Current;				
	Expectation Value, Expectation Values				
	of Energy and Momentum Operators,				
	Ehrenfest theorem.				
	Continuity of wave Function,				
UNIT-III	Boundary Condition and Discrete	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION
	Energy Levels, Steady State	13 LECTURES	METHOD	GET THE	THROUGH ASSIGNMENTS
	Schrödinger Equation, Application of	LECTURES	(NOTES IN FORM OF	UNDERSTANDING OF THE TOPIC	AND
	Schrödinger Wave Equation for		PDF,AUDIO/	DISCUSSED.	DISCUSSIONS
	Particle in an infinitely Rigid Box:		VIDEO,CLASS ROOM		
	Energy and Momentum Quantization,		TEACHING METHOD)		
	Normalization, Quantum Dot as an				

		example; One Dimensional Step				
		Potential, Rectangular Barrier, Square				
		Well Potential				
		Bohr atomic model, de Broglie Waves			S	
	UNIT-IV	and Stationary Orbits, Hydrogen Atom	MIN 13	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	TUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		Spectrum, Atomic Excitation-Franck	LECTURES			
		Hertz Experiment, Correspondence				
		Principle, Sommerfeld Elliptic Orbits.				
		Electron Angular Momentum, Space				
		Quantization, Electron Spin and Spin		TEACHING METHOD)		
		Angular Momentum, Spin Magnetic				
		Moment, Stern – Gerlach Experiment,				
		Pauli's Exclusion Principle and				
		PeriodicTable. Fine structure, Spin				
		Orbit Coupling, Spectral Notation for				
		Atomic States,				
		Total Angular Momentum, Vector				
		Model, Coupling schemes (LS and jj)				
		for two electron systems. Zeeman				
		Effect for one Electron System.				

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. NEETU SINGH/ DR. SEEMA SHUKLA

DEPARTMENT: DEPARTMENT OF **PHYSICS**

CLASS: BSC (NEP)-II YEAR (IV SEMESTER) Applicable form January 2025 (CREDITS:04)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1		P-7 (MAJOR & MINOR) PHY401 - Electronics	Course Ou The learning 1. Utility of 2. The basic 3. Transisto 4. Concept of 5. Feedback 6. The impo	atcomes: g of this paper on electronics will enhance resonant circuits and AC bridges. e electronic devices and their applications r biasing. of frequency response, bandwidth and aud	e the understanding.	·	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
				circuits, Impedance matching, Maximum				
				power transfer theorem,				

UNIT-II	AC Bridges: measurement of inductance (Maxwell's bridge), and measurement of capacitance (Schering's and Wein's bridge). Diodes: Qualitative idea of Fermi level. Formation of depletion layer in PN junction diode, field and potential at the depletion layer. Barrier width, Qualitative idea of current flow mechanism in forward and reverse biased diode, current conduction in PN junction diode and its characteristics, Application of PN junction diodes: Transistor as a switch, Half wave rand Full wave (centre tap and bridge) rectifiers, calculation of ripple factor and rectification efficiency, Clippers and Clampers Zener Diode: Characteristics and applications of Zener diode, Avalanche and Zener breakdown, Filter circuits: choke input, capacitor	MIN 14 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
UNIT-III	Bipolar transistors: PNP and NPN transistors. Study of CB, CE and CC configurations w.r.t. characteristics; active, cutoff and saturation regions, current gains and relations between them, applications of transistors Transistor Biasing: Faithful	MIN 12 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

	amplification and need for biasing. Fixed Bias (Base Resistor Method), Collector to Base Bias (Base Bias with Collector Feedback) Emitter Bias (Fixed Bias with Emitter Resistor) and Voltage Divider Bias, DC Load Line and Q- point stabilization, thermal runaway, StabilityFactors, Amplifiers: single stage and multistage transistor amplifier, Theory and working of RC coupled voltage amplifier (Uses of various resistors & capacitors), frequency response of RC coupled				
UNIT-I	Feedback) Emitter Bias (Fixed Bias with Emitter Resistor) and Voltage Divider Bias, DC Load Line and Qpoint stabilization, thermal runaway, StabilityFactors, Amplifiers: single stage and multistage transistor amplifier, Theory and working of RC coupled voltage amplifier (Uses of various resistors & capacitors), frequency response of RC coupled amplifier and its analysis. Feedback Circuits: Effects of positive and negative feedback. Feed back factor, loop gain. advantages of negative feedback amplifiers, Input Impedance and Output Impedance, Oscillator Circuits: Use of positive feedback for oscillator operation. Barkhausen criterion for self sustained oscillations, types of oscillator, introduction to sinusoidal and square wave oscillators, tank circuit, qualitative analysis of Hartley oscillator Basic principle of transmission and reception: principles of amplitude modulation, modulation index, demodulation	MIN 12 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
	Electronic Instruments: Multimeter: linear and digital multimeters, measurement of dc voltage, dccurrent, ac voltage, ac current and resistance. Cathode Ray Oscilloscope: Block				
	diagram of basic CRO. Construction				

			of CRT, applications of CRO Electronic components: colour codes of resistors and capacitors, identification ans testing of active and passive components. References: 1. B.G. Streetman, S.K. Banerjee, "Solid State Electronic Devices", Pearson Education India, 2015, 7e 2. W.D. Stanley, "Electronic Devices: Circuits and Applications", Longman Higher Education, 1989 3. J.D. Ryder, "Electronic Pundamentals and Applications", Prentice-Hall of India Private Limited, 1975, 5e 20 4. R.L. Boylestad, L. Nashelsky, "Electronic Devices and Circuit Theory", Prentice-Hall of India Pvt. Ltd., 2015, 11e 5. J. Millman, C.C. Halkias, Satyabrata Jit, "Electronic Devices and Circuits", McGraw Hill, 2015, 4e 6. A. Sudhakar, S.S. Palli, "Circuits and Networks: Analysis and Synthesis", McGraw Hill, 2015, 5e 7. B. L. Theraja, "Basic Electronics", S. Chand, Lucknow 8. S.L. Gupta, V. Kumar, "Handbook of Electronics", Pragati Prakashan, Meerut, 2016, 43e WEB REFERENCES: 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Uttar Pradesh Higher Education Digital Library, http://www.youtube.com/user/nptelhrd 3. Uttar Pradesh Higher Education Digital Library, https://www.swayamprabha.gov.in/index.php/program/current_he/8 Suggested Equivalent Online Courses 1. Coursera, https://www.coursera.org/browse/physical-science-andengineering/ physics-and-astronomy 2. edX, https://www.coursera.org/browse/physical-science-andengineering/ physics-and-astronomy 2. edX, https://www.edx.org/course/subject/physics 3. MIT Open Course Ware - Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/ 4. Swayam - Government of India, https://swayam.gov.in/explorer?category=Physics National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
2	BSC (NEP) - II YEAR,	P-8	Course Outcomes: 1. Experimental physics has the most striking impact on the industry wherever the instruments are used to determine the electronic properties.	ne thermal and

IV SEMESTER CREDITS-4 T:04	(MAJOR) PHY402- Heat and Electronics LAB	3. Online Vi Lab Experim Students hav	re to do three experiments from Group A re to do one experiment each from virtual 1. Mechanical Equivalent of Heat by Callender and Barne's method 2. Coefficient of thermal conductivity of copper by Searle's apparatus 3. Value of Stefan's constant 4. Variation of thermo-emf across two junctions of a thermocouple with temperature 5. Temperature coefficient of resistance by Platinum resistance Thermometer.	simulation technicand three experin	ques and provide a basis for ments from Group B	C	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		Group B Electronic s	1. PN Junction/ Zener diode characteristics 2. Half wave & full wave rectifiers and Filter circuits 3. Characteristics of a transistor (PNP / NPN) in CE, CB and CC configurations 4. Unregulated and Regulated power supply 5. Diode as clipper and Clamper 6. Frequency response of RC coupled amplifier 7. Diode as clipper and Clamper 8. Various measurements with Cathode Ray Oscilloscope (CRO) 9. Charging and discharging in RC circuits 10. A.C. Bridges: experiments based on measurement of L and C 11. Resonance in series and parallel RCL circuit	MIN 13 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			Vidyapeetham	MIN	OFFLINE TEACHING	STUDENTS WILL	EVALUATION

		T		T	T
НЕАТ:	https://vlab.amrita.edu/?sub=1&brch =194 1. Heat transfer by radiation 2. Heat transfer by conduction 3. Heat transfer by natural convection 4. The study of phase change 5. Blackbody radiation: Determination of Stefan's constant 6. Newton's law of cooling 7. Lee's disc apparatus 8. Thermo-couple: Seebeck effect	13 LECTURES	METHOD (NOTES IN FORM OF PDF,AUDIO/VIDEO,CLASS ROOM TEACHING METHOD)	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH ASSIGNMENTS AND DISCUSSIONS
ELECTR ONICS:	Virtual Labs an initiative of MHRD Govt. of India http://vlabs.iitkgp.ernet.in/be/index.ht ml# 1. Familiarisation with resistor 2. Familiarisation with capacitor 3. Familiarisation with inductor 4. Ohm's Law 5. VI characteristics of a diode 6. Half & Full wave rectification 7. Capacitative rectification 8. Zener Diode voltage regulator 9. BJT common emitter characteristics 10. BJT common base characteristics 11. Studies on BJT CE amplifier 12. RC frequency response http://vlabs.iitkgp.ac.in/psac/# 13. Diode as Clippers 14. Diode as Clampers 15. BJT as switch and Load Lines http://vlabs.iitkgp.ac.in/be/# 16. RC frequency response Virtual Labs at Amrita Vishwa Vidyapeetham https://vlab.amrita.edu/index.php?sub=1&brch=201 17. Hartley oscillator	MIN 13 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

REFE	18. Colpitt oscillator CRENCES:			
1. B.L 2. S. P 3. And New A 4. R.L 5. A. S WEB Virtua Vidya Virtua	. Worsnop, H.T. Flint, "Advanced Practical Phanigrahi, B. Mallick, "Engineering Practical Phanigrahi, B. Mallick, "Engineering Practical Phanigrahi, B. Mallick, "Engineering Practical Phanigraphics and R.K. Shukla, "Practical Phania Srivastava and R.K. Shukla, "Practical Phania Age International (P) Limited Publishers . Boylestad, L. Nashelsky, "Electronic Devices Sudhakar, S.S. Palli, "Circuits and Networks: A REFERENCES: . Labs at Amrita Vishwa peetham,https://vlab.amrita.edu/?sub=1&brch= 1 Labs an initiative of MHRD Govt. of India,ht 1 Platforms/Web Links of other virtual labs ma	hysics", Cengage Learning India Prisics (Electricity, Magnetism and Es and Circuit Theory", Prentice-Hal Analysis and Synthesis", McGraw Hall Hall Hall Hall Hall Hall Hall Ha	vt. Ltd., 2015, 1e lectronics)", Published by: l of India Pvt. Ltd., 2015, 11e lill, 2015, 5e	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. NEETU SINGH/ DR. SEEMA SHUKLA

DEPARTMENT: DEPARTMENT OF **PHYSICS**

CLASS: BSC-III YEAR (V SEMESTER) Applicable from July 2024(CREDITS:04)

XS.N O.	CLASS (YEAR, SEMESTE R)	PAPER	UNIT	TOPIC NAME	MONTHL Y/WEEKL Y PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
I	BSC-III YEAR, V SEM	PAPER –I ELECTRONICS	UNIT-I	DIODES	MIN. 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	TRANSISTORS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		UNIT- REF 1.SEM	UNIT-III	FIELD EFFECT TRANSISTORS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	NUMBER SYSTEM AND CODES	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			1.SEMICON	ENCE BOOK: DUCTOR DEVICES : KANAAN KANO NIC PRINCIPLES : A P MALVINO				FINAL EVALUATION THROUGH INTERNAL

								ASSESMENT UPLODED ON LU EXAM PORTAL	
II	П	BSC-III YEAR, V SEM	PAPER-II NUCLEAR PHYSICS	UNIT-1	GENERAL PROPERTIES OF NUCLEUS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-II	NUCLEAR MODELS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS	
			UNIT-III	NUCLEAR REACTIONS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS	
			UNIT-IV	ELEMENTARY PARTICLES	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS	
			1.INTRODU	ENCE BOOK: JCTION TO THE PHYSICS OF NUCLEI & P ON DETECTION AND MEASUREMENT : C			A,2004)	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL	
Ш	BSC-III YEAR, V SEM	PAPER-III		1.TO STUDY THE CHARACTERISTICS OF FIELD EFFECT TRANSISTOR	MIN 48 LECTURES	DISCUSSIONS & OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC	EVALUATION THROUGH PRACTICALS AND	
		PHYSICS PRACTICALS		2.STUDY OF FET AS A VOLTAGE VARIABLE RESISTOR (VVR) AND APPLICATION OF FET AS A VVR IN VOLTAGE CONTROLLED ATTENUATOR (VCA)			DISCUSSED.	DISCUSSIONS	
	1			3.TO STUDY THE FREQUENCY					
				RESPONSE OF RC COUPLED TRANSISTOR AMPLIFIER 4.STUDY OF IC AMPLIFIER					

	6.TO DETERMINE THE VELOCITY OF SOUND BY CRO 7.TO DETERMINE STEFAN'S CONSTANT 8.TO STUDY SERIES AND PARALLEL LCR CIRCUIT 9.TO STUDY CLIPPER AND CLAMPER CIRCUITS. REFERENCE BOOK: 1. ADVANCED PRACTICAL PHYSICS FOR PUBLISHING HOUSE. 2. A TEXT BOOK OF PRACTICAL PHYSICS MAHAL. 3. A LABORATORY MANUAL OF PHYSICS PUBLICATIONS.	: I. PRAKASH AND RAMAKRISHNA 11	^H EDITION, KITAB	FINAL EVALUATION THROUGH PRACTICALS UPLODED ON LU EXAM PORTAL
--	--	---------------------------------	-----------------------------	--

ACADEMIC CALENDAR: SESSION- (2024-2025)

NAME OF TEACHER: DR. NEETU SINGH/ DR. SEEMA SHUKLA

DEPARTMENT: DEPARTMENT OF PHYSICS

CLASS: BSC-III YEAR (VI SEMESTER) Applicable from January 2025 (CREDITS:04)

S.NO.	CLASS (YEAR, SEMESTE R)	PAPER	UNIT	TOPIC NAME	MONTHL Y/WEEKL Y PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
I	BSC-III I YEAR, VI SEM	MATHEMATICAL METHODS AND NUMERICAL TECHNIQUES UNIT-II		COMPLEX NUMBERS	MIN. 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
				INITIAL AND BOUNDARY VALUE PROBLEMS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	MEAN VALUE THEOREM	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	NUMERICAL METHODS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			REFER MATHEMA	FINAL EVALUATION				

								THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
П	BSC-III YEAR, VI SEM	PAPER-II ELEMENTS OF RELATIVISTIC AND CLASSICAL	UNIT-1	MICHELSON-MORRELY	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
		MECHANICS	UNIT-II	SPACETIME DIAGRAMS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-III	HOLONOMIC AND NON- HOLONOMIC CONSTRAINTS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
			UNIT-IV	TWO BODY CENTRAL FORCE PROBLEM	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
				ENCE BOOK: CTION TO SPECIAL RELATIVITY; R. R	ESNICK (WILEY	- EASTERN)		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
ш	BSC-III YEAR, VI SEM	SOLID STATE PHYSICS	UNIT-1	CRYSTAL STRUCTURE	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS

REFERENCE BOOK: 1. INTRODUCTION TO SOLID STATE PHYSICS: CHARLES KITTEL 2. SOLID STATE PHYSICS: ADRIANUS J. DEKKER					
UNIT-IV	MAGNETIC PROPERTIES OF MATTER	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
UNIT-III	ELECTRICAL PROPERTIES OF MATERIALS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS
UNIT-II	CRYSTAL BINDINGS	MIN 12 LECTURES	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE UNDERSTANDIN G OF THE TOPIC DISCUSSED.	EVALUATION THROUGH ASSIGNMENTS AND DISCUSSIONS